Drip to Tableau

This page provides you with instructions on how to extract data from Drip and analyze it in Tableau. (If the mechanics of extracting data from Drip seem too complex or difficult to maintain, check out Stitch, which can do all the heavy lifting for you in just a few clicks.)

What is Drip?

Drip is an eCommerce Customer Relationship Management platform that gathers and organizes customer data, then enables online retailers to craft personalized omnichannel buying experiences.

What is Tableau?

Tableau is one of the world's most popular analysis platforms. The software helps companies model, explore, and visualize their data. It also offers cloud capabilities that allow analyses to be shared via the web or company intranets, and its offerings are available as both installed software and as a SaaS platform. Tableau is widely known for its robust and flexible visualization capabilities, which include dozens of specialized chart types.

In addition to its business software, Tableau also offers a free product called Tableau Public for analyzing open data sets. If you're new to Tableau, this offering is a great way to experience Tableau's capabilities at no cost and share your work publicly.

Getting data out of Drip

You can collect data from Drip’s servers using webhooks and user-defined HTTP callbacks. Set up the webhook in your Drip account, and define a URL that your script listens to and from which it can collect the data.

Sample Drip data

Once you've set up webhooks and HTTP endpoints, Drip will begin sending data via the POST request method. Data will be enclosed in the body of the request in JSON format. Here's a sample of what that data might look like.

{
  "id": "z1togz2hcjrkpp5treip",
  "status": "active",
  "email": "john@acme.com",
  "custom_fields": {
    "name": "John Doe"
  },
  "tags": ["Customer", "SEO"],
  "time_zone": "America/Los_Angeles",
  "utc_offset": -440,
  "created_at": "2017-06-21T10:31:58Z"
  "ip_address": "123.123.123.123",
  "user_agent": "Mozilla/5.0",
  "lifetime_value": 2000,
  "original_referrer": "https://google.com/search",
  "landing_url": "https://www.drip.co/landing",
  "prospect": true,
  "base_lead_score": 30,
  "lead_score": 65,
  "user_id": "123"
}

Preparing Drip data

You need to map all the data fields in the JSON data from your webhook into a schema that can be inserted into your database. For each value in the response, you need to identify a predefined datatype (i.e. INTEGER, DATETIME, etc.) and build a table that can receive them.

Loading data into Tableau

Analyzing data in Tableau requires putting it into a format that Tableau can read. Depending on the data source, you may have options for achieving this goal, but the best practice among most businesses is to build a data warehouse that contains the data, and then connect that data warehouse to Tableau.

Tableau provides an easy-to-use Connect menu that allows you to connect data from flat files, direct data sources, and data warehouses. In most cases, connecting these sources is simply a matter of creating and providing credentials to the relevant services.

Once the data is connected, Tableau offers an option for locally caching your data to speed up queries. This can make a big difference when working with slower database platforms or flat files, but is typically not necessary when using a scalable data warehouse platform. Tableau's flexibility and speed in these areas are among its major differentiators in the industry.

Analyzing data in Tableau

Tableau's report-building interface may seem intimidating at first, but it's one of the most powerful and intuitive analytics UIs on the market. Once you understand its workflow, it offers fast and nearly limitless options for building reports and dashboards.

If you're familiar with Pivot Tables in Excel, the Tableau report building experience may feel somewhat familiar. The process involves selecting the rows and columns desired in the resulting data set, along with the aggregate functions used to populate the data cells. Users can also specify filters to be applied to the data and choose a visualization type to use for the report.

You can learn how to build a report from scratch for free (although a sign-in is required) from the Tableau documentation.

Keeping Drip data up to date

Once you’ve coded up a script or written a program to get the data you want and move it into your data warehouse, you’re going to have to maintain it. If Drip modifies its webhook implementation, or sends a field with a datatype your code doesn't recognize, you may have to modify the script. If your users want slightly different information, you definitely will have to.

From Drip to your data warehouse: An easier solution

As mentioned earlier, the best practice for analyzing Drip data in Tableau is to store that data inside a data warehousing platform alongside data from your other databases and third-party sources. You can find instructions for doing these extractions for leading warehouses on our sister sites Drip to Redshift, Drip to BigQuery, Drip to Azure Synapse Analytics, Drip to PostgreSQL, Drip to Panoply, and Drip to Snowflake.

Easier yet, however, is using a solution that does all that work for you. Products like Stitch were built to move data automatically, making it easy to integrate Drip with Tableau. With just a few clicks, Stitch starts extracting your Drip data, structuring it in a way that's optimized for analysis, and inserting that data into a data warehouse that can be easily accessed and analyzed by Tableau.